Melhor GPU para projetos de aprendizado de máquina
Machine Learning e Deep Learning são dois dos temas mais comentados no mundo da Tecnologia da Informação. Nisso, ensinamos Inteligência Artificial às máquinas . Embora seja possível criar projetos básicos de aprendizado de máquina com uma GPU integrada, uma vez que você comece a lidar com mecanismos neurais e a renderizar imagens, precisará de uma boa GPU. Neste post veremos algumas das melhores GPUs para Projetos de Machine Learning .
Melhor GPU para projetos de aprendizado de máquina
Se você está procurando algumas das melhores GPUs para trabalhar melhor em projetos de aprendizado de máquina, aqui estão algumas das melhores do mercado:
- NVIDIA RTX 3090Ti
- AMD Radeon VII
- NVIDA RTX 3070
- EVGA GeForce GTX 1080
- NVIDIA RTX 3060Ti
Vamos aos serviços dessas GPUs para projetos de aprendizado de máquina.
1] NVIDIA RTX 3090Ti
Embora a GPU custe uma fortuna, ela também garante aos usuários uma melhor experiência de vídeo com a ajuda de Deep Learning Super Sampling, visualização 4K e recursos de rastreamento em tempo real. Em suma, ser capaz de executar operações volumosas com facilidade e em menos tempo vale a pena gastar cada centavo na NVIDIA RTX 3090 Ti.
2] AMD Radeon VII
Se você está tentando encontrar GPU, especialmente para aprendizado profundo, o AMD Radeon VII é a melhor aposta. Um tamanho de memória de HBM2-16 GB expande as habilidades dos usuários para fazer a carga de trabalho complexa e lidar com operações difíceis sem problemas.
3] NVIDIA RTX 3070
A NVIDIA RTX 3070 é um nome conhecido na comunidade de ciência de dados, aprendizagem profunda e amantes da IA. Essa GPU oferece uma ampla gama de recursos para aliviar o estresse da carga de trabalho, como memória GDDR6 de 8 GB, Tensor Cores e assim por diante.
Sendo a prioridade de muitos usuários, às vezes representam um problema de disponibilidade quando se fala em GPU RTX 3070. Assim como a NVIDIA RTX 3090, este modelo também oferece ray tracing em tempo real e suporta DLSS. Como o RTX 3070 é uma GPU forte, calor e alto consumo de energia podem ser esperados. Além dessa pequena desvantagem facilmente solucionável, a NVIDIA RTX 3070 é uma compra obrigatória.
4] EVGA GeForce GTX 1080
Passando para a próxima GPU, a EVGA GeForce 1080 oferece 8 GB de tamanho de memória GDDR5X, fornecendo memória suficiente para fazer o trabalho sem problemas e sem ser perturbado. Ele funciona na arquitetura NVIDIA Pascal e oferece visuais de ponta para extrair toda a diversão dos jogos AAA. A EVGA GeForce GTX 1080′ também usa o NVIDIA VRWorks para otimizar a realidade virtual.
5] NVIDIA RTX 3060 Ti
A NVIDIA RTX 3060 Ti é uma das melhores GPUs econômicas atualmente disponíveis no mercado. Esta GPU vem com 8 GB de tamanho de memória GDDR6, 4964 núcleos CUDA que oferecem uma alternativa resiliente. Assim como qualquer outra GPU NVIDIA, você também terá Tesnore Cores, fornecendo excelentes recursos de aceleração.
Uma das limitações da NVIDIA RTX 3060 é que ela não possui uma escala de potência tão alta quanto algumas das GPUs mais emblemáticas do mercado. No entanto, esta é a única desvantagem em comparação com muitos outros benefícios que virão em uma faixa econômica.
É isso!
A capacidade de lidar melhor com cálculos paralelos torna as GPUs altamente benéficas para o aprendizado de máquina. No entanto, é importante observar que nem todas as tarefas de aprendizado de máquina exigem GPUs, e a escolha do hardware depende dos requisitos específicos e da escala do projeto. E, portanto, listamos alguns dos melhores que você pode obter para projetos de aprendizado de máquina.
Deixe um comentário